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The recent analysis of the propagation of relativistic particles in spacetime and 
their localization problem is used to develop scattering theory in quantum field 
theory in configuration space. An explicit functional expression is derived for 
the underlying transition amplitudes having a consistent probabilistic interpreta- 
tion. Some of the basic ingredients in the analysis are the functional approach 
developed earlier for transition amplitudes and the amplitudes for stimulated 
emission of particles by external sources in spacetime. 

1. I N T R O D U C T I O N  

In describing the scattering of relativistic particles in quantum field 
theory one almost always carries out the analysis in momentum space. The 
many  experiments (e.g., Franson and Potocki, 1988; Grangier  et al., 1986, 
and the many references therein) indicating the localization, by detectors, 
of  not only massive but also massless particles has urged us to develop 
scattering theory in configuration space. One is eventually interested in 
asking probabilistic questions, such as, What is the probabili ty that a given 
particle emerges spatially within a cone after a collision or some decay 
process? Earlier efforts (e.g., Han et al., 1987; Ali, 1985 and the many 
references therein) dealing with the construction of position operators and 
wavefunctions (as done in nonrelativistic theory) are so remote from the 
field theory formulation of particle dynamics that we have reconsidered the 
localization problem afresh (Manoukian,  1989, and references therein) 
directly from field theory and an underlying unitari ty  expansion carried out 
in configuration space having a consistent probabilistic interpretation. 

The purpose of this work is to develop the scattering theory of  relativistic 
particles in quantum field theory in configuration space, based on my earlier 
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analysis (Manoukian, 1989) of their propagation in spacetime. An explicit 
expression for such amplitudes is derived as an extension of the investiga- 
tion (Manoukian, 1988) dealing with a functional approach to transition 
amplitudes in momentum space. I make a systematic use of the analysis 
of stimulated emission of particles by external sources in spacetime 
(Manoukian, 1989). In this paper no specific models are considered and it 
is restricted to a real, massive scalar field. This work, however, lays the 
foundation for more general studies involving physically more relevant 
theories. The more realistic gauge theories (e.g., Manoukian, 1986) are 
beyond the scope of the present paper and, together with applications, will 
be considered in a subsequent report. 

2. SCATrERING THEORY IN CONFIGURATION SPACE 

Consider a massive scalar field ~b(x) with interaction Lagrangian 
density L~(~b). Also couple the field linearly to an external (c-number) 
source K(x). Scattering in and out states are denoted by [g-) and If+), 
respectively. 

The quantum action principle (Schwinger, 1951, 1954; Lam, 1965; 
Manoukian, 1985) gives the expression 

$ 

where ( f +  Ig-)  K'~ is the transition amplitude with L~ set equal to zero and 
in the presence of an intervening source K(x) localized in time. The latter 
amplitude is precisely the amplitude for stimulated emission by an external 
source K(x) considered earlier (Manoukian, 1989) where there is initially 
a given number of particles before the intervening source K(x) is switched 
o n .  

I spell out the expression for ( f + l g - )  K'~ To this end, I consider a 
discrete (Schwinger, 1970; Manoukian, 1984) variable notation (a lattice) 
for space, at any given time, {Yl, Y2,..- }. Let yO and y~ be any given times 
such that K (x) = 0 for x ~ yO and for x ~ -- yO. That is, the intervening source 
is switched on after a time reading y O and it is then switched off before a 
time reading yO. Let M1 denote the number of particles localized at yl,  M2 
the number of particles localized at Y2, and so on, before the intervening 
source K (x) is switched on. Similarly, let N1 denote the number of particles 
localized at Yl, N2 the number of particles localized at Y2, and so on, after 
the intervening source K(x) is finally switched o i l  Then (Manoukian, 1989) 

(f+lg_)K.0= lira ( N ; N , , N 2 , . . . , y ~ 1 7 6 1 7 6  (2) 
y0~d-o0 
yl0~ --co 
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where 

(N;  N, ,  N2, . . . , y~ M 1 ,  M 2 ,  . . . , yO)mO 

= (NI! N2! . . .  MI! MR!-..)I/2 

(ial)N, -~, (ia2)N2-m2 (ga,)"-(g,2)'~,2 

X~X" ( N l - m O !  ( N 2 -  m2)! roll! ma2! 

X - -  - - "  �9 �9 

m2a!  m22!  

(ia~) M,-E, m,, (ia*2)Mz-Gm,2 
x ..-<o+1o_> (3) 

(M1--Ei r a i l ) !  (M2-Yi  m i 2 ) !  

Y. stands for a summation over all nonnegative integers: N~, N 2 , . . . ,  M~, 
M 2 , . . .  ; m~, m2, . . .  ; m~,  m12,. . .  ; m21,. . .  ; satisfying the constraints 

N I +  N2+ . . . .  N, M I +  M2+ . . . .  M 

mH+m12+ . . . .  / "F / l ,  0--<mH+m21+ - - .  _ M  1 

m2~+m22+ . . . .  m2, 0--< m12+m22 + " ' "  <-m2 

O<_ ml <- N1 

0<- m2 < - N2 

(4) 

The ai are explicitly given by 

a i : (d3yi)U2a(yi) 

f d3 k 
a(y) = (2~r)a(2kO)l/2 e'kyK(k), 

K ( k )  = I (dx) e - ' ~ K ( x )  

a(y) may be also rewritten as 

a(y) = f (dx) A(y - x ) K ( x )  

A(y - x )  = f 
d3k 

(2zr)3(2kO)U2 e 'k~y-*) d 

k ~ = (k2+ m2) 1/2 
(5) 

(6) 

(7) 

(8) 
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(0+]0_) K,o is the well-known expression for the vacuum-to-vacuum transition 
amplitude in the absence of the nonlinear coupling L1 : 

�9 (0+[0_)K'~ f (dx)(dx')K(x)A+(x-x')K(x')] (9) 

f e ik(x-x'), = (k2+ m 2 )  1/2, for 
d3k 

A + ( x - x ' ) = i  (21r)32k o k o 

Finally, 

xO~ X tO 

(lO) 

/~q = (d3y, d3yj)l/Zg(yi-yj) (11) 

6(y-y')= f d3xA(y-x),~----~A(x-y ') (12) 

yO> xO>y,O denotes the amplitude that a particle propagates from time- 
space coordinate y' = (y,O, y,) to time-space coordinate y = (yO, y). Note that 
(12) does not coincide with the so-called familiar Feynman propagator 
A + ( y - y ' )  in (10). 

If  we denote the transition amplitude by 

(f+lg-) = (N; N1, N 2 , . . . ,  +IM; M, ,  M 2 , . . . ,  - )  (13) 

with the actual nonlinear coupling, in the absence of the external source, 
then we finally obtain for the transition amplitude of M particles, M1 of 
which are initially at Yl, M: of which are initially at Y2, and so on, to N 
particles, N1 of  which are finally at yl, N2 of  which are finally at Y2, and 
so on, is, from (1), 

(N;  NI, N2 . . . .  , +IM; M~, M2 . . . .  , - )  

l 6 

•  g , , g 2 , .  , y ~ I M ; M , , M 2 , . .  o,,~o, -" " ,  Yl )  ' [K=0 (14) 

for yO_> + oo, yO__> _ ~ ,  with the amplitude ( �9 I " )K.o on the right-hand side 
of (14) defined through (3)-(12). Equation (14) is the main result of the 
paper. In the next section I consider so-called connected amplitudes and 
further simplifications, and finally write the amplitudes in an LSZ form. 

3. FURTHER C O N S I D E R A T I O N S  

I consider a simplification o f  the very general expression in (14). To 
this end, consider the scattering o f  r particles ( M  = r) with nonoverlapping 
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positions y ~ , . . . ,  y~ to s particles ( N  = s) with nonoverlapping positions 
Yr+t,- . . ,Y,+s. Hence, in (4), M~= 1 , . . . ,  Mr = 1, Nr+~= 1 , . . . ,  Nr+s = 1, 
and all the other M~, Nj are zero. Let us also consider connected amplitudes. 
Clearly any such amplitude excludes any term involving the amplitudes in 
(12) which deal with particles not participating in the scattering process. 
From (3) and (4) we then have 

(s; 1~+~,.. . ,  lr+~; y~ 11 ,12 , . . . ,  lr ;  y~ '~ 

= ( i a l ) .  (iar)(ia*+l)... " * Ko �9 . 0a~+~)(0+10-) " ( 1 5 )  

Hence, upon writing 

(s; l~+a, . . . ,  lr+~,+lr; l l ,  12~.. . ,  1~, --)c 
r+s 

= H (a3y,) '/2 (s; l~+a, . . . ,  lr+~, +lr; 1,, 12 , . . . ,  lr, -)~ (16) 
i = 1  

we have from (14) 

(s; 1~+1,1~+2,..., 1~+~, +It; 11,12,..., In, -)~ 

=(i)r+s(iH=l f (dxi) A(yi--Xi))(j[~r[lf (dxi) A*(yj-xj)) 
t •  f (dx)Lt(-'8--K--~X))]K(x,)...K(x~+~)(O+IO_)K'~ o 

( 1 7 )  

where o y~=yO~+~, for i=r+l,... ,r+s, and y~176 for i =  
1 , . . . ,  r. To simplify (17) further, we may use the identity 

i 6 

z 6 

K(y) 

1 8 (18) 

with L'~(z)= (d/dz) L~ (z), and the functional differential equation 

t ~ K 

where (0+10_) ~ is the exact vacuum-to-vacuum transition amplitude. Hence 
we may rewrite the right-hand side of (17) in an LSZ form: 

(i)~+s(iO, f (dxi) A(yi-xi))(j2O~, f (dxj) A*(yj--xj)) 
x ( - [ ~ + m  2) rc(x,,...,xr+,) (20) 

i 1 
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where  

T ( X ! , ' ' ' ,  Xr+s) : YI ( - i  (O+IO_)K[K:o (21) 
j=l 

The A are  def ined  in (8). E q u a t i o n  (20) is a spec ia l  case o f  the genera l  
exp re s s ion  de r ived  in (14), (3) - (12) .  Ex tens ion  o f  the  p resen t  work  to the  

m o r e  rea l i s t ic  gauge  theor ies ,  t oge the r  wi th  app l i ca t ions ,  will  be  c ons ide r e d  
in a fu ture  repor t .  
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